
J. Sci. Trans. Environ. Technov. 3(1), 2009

www.bvgt-journal.com

25

Quick Mining Algorithm (QMA) using pattern mining techniques for roomy
data base
J. Umamaheswari* and S.Ravichandran
Department,of Computer Science, Govt., Arts and Science College for Women, Pudukkottai - 622 001 Tamil Nadu, India
Department of Computer Science, H.H. The Rajah’s College , Pudukkottai - 622 001, Tamil Nadu, India.

Abstract
Pattern mining plays an essential role in many data mining tasks such as mining sequential patterns, multi-dimensional pat-
terns, max-patterns, and emerging patterns. Pattern mining techniques can also be extended to solve many other problems
involving computation and classification. Pattern mining is a significant research problem. This paper discusses the problem
of efficient and effective pattern mining with an orientation towards a fast mining method.

Keywords : apriori algorithm, association rule, pattern growth, quick search

J. Sci. Trans. Environ. Technov. 2009, 3(1): 25 - 29

*Corresponding Author
email: rajgokul2002@yahoo.com

25

1. INTRODUCTION

To create the set of candidate patterns of length (k+1)
from the set of frequent patterns of length k (for k¸1),
and check their matching occurrence frequencies in the
database, the Apriori heuristic approach achieves fine
performance gain by reducing the size of candidate
sets. However, in situations with productive frequent
patterns, long patterns, or quite low minimum support
thresholds, an Apriori-like algorithm may still suffer
from the nontrivial costs. It is expensive to handle a
huge number of candidate sets. For example, the Apriori
algorithm will need to produce more candidates and
test their occurrence frequencies and candidates in
total. This is the inherent cost of candidate generation
no matter what implementation technique is applied
(Han et al., 2000). Furthermore, it is monotonous to
repeatedly scan the database and check a large set of
candidates by pattern matching, which is especially
true for mining long patterns.

Thus, Apriori algorithm has its advantages and
disadvantages. A way is to improve the effectiveness
of frequent pattern mining substantially, and avoiding
the costly candidate-generation-and-test and repeated
database scan operations while obtaining this
advantage. Frequent pattern mining often suffers not
only from the lack of efficiency but also from the lack
of effectiveness, i.e., there could be a huge number of
frequent patterns generated from a database.

As frequent pattern mining is a vital data-mining task,
developing efficient frequent mining techniques has
been an important research direction in data mining.
This paper tries to make good movement in that
direction.

2. CONTRIbUTIONS

In this paper, we study the problem of frequent
pattern mining (Wang et al., 2002; Sriphaew and
Theeramunkong, 2004), as well as some of its extensions.
In particular, we make the following contributions. We
systematically developed an association rule based
pattern mining. A novel algorithm QMA is proposed for
efficiently mining frequent patterns from voluminous
dense datasets (Burdick et al., 2001). Constraint-based
data mining is an important approach to solve the
problem of data mining. We study the problem of
constraint-based fast mining using pattern-growth
methods (Bayardo et al., 1999). Our study shows that
pattern-growth methods can push constraints deeper
into the mining process.

We extend the fast pattern growth method to allow the
mining of sequential patterns. Our approach shows
that fast pattern mining methods are more efficient in
mining voluminous sequence databases. Interesting
techniques are developed to solve the sequential fast
search mining problem effectively.

3. PRObleM DefINITIONS

Association rules can be derived from frequent patterns
(Agrawal and Srikant, 1994). An association rule is
an implication of the form X → Y, Where X and Y are
itemsets and X ∩ Y= θ the rule X → Y has support s in a
transaction database TDB if supTDB(X U Y) = S.

The rule X → Y holds in the transaction database TDB
with confidence C where C = sup(X U Y)/ sup(X).

The frequent pattern mining problem is mainly focused
towards the mining association rules between sets of
items. Based on the research findings and solution of
Agrawal and Srikant, (1994) we can define

 Let I = { i1,..........,im } be a set of items.

An itemset X ⊆ I. Particularly, an itemset with I items

J. Sci. Trans. Environ. Technov. 3(1), 2009

www.bvgt-journal.com

26 J. Umamaheswari and S.Ravichandran

is called an I-itemset. A transaction T = (tid,X) is a
tuple where tid is a transaction-id and X is an itemset.A
transaction T = (tid,X) is said to contain itemset Y if
Y⊆ X.A transaction database TDB is a set of
transactions.

The support of an itemset X in transaction database
TDB, denoted as supTDB(X) or sup(X), is the number of
transactions in TDB containing X.

3.1. Problem statement

Given a user-specified support threshold min sup X is
called a frequent itemset or frequent pattern if sup(X)
min sup. The problem of mining frequent itemset is to
find the complete set of frequent itemset in a transaction
database TDB with respect to a given support threshold
min- sup. Given a transaction database TDB, a support
threshold min sup and a confidence threshold min conf,
the problem of association rule mining is to find the
complete set of association rules that have support and
confidence no less than the user-specified thresholds,
respectively.

Association rule mining can be divided into two
steps.

i. Frequent patterns with respect to support threshold
min sup are mined.

ii. Association rules are generated with respect to
confidence threshold min conf.

As shown in many studies, the first step, mining
frequent patterns, is significantly more costly in terms
of time than the rule generation step. Frequent pattern
mining is not only used in association rule mining.
Instead, frequent pattern mining is the basis for many
data mining tasks, such as sequential pattern mining
and associative classification (Li et al., 2001). It also
has broad applications, such as basket data analysis,
cross-marketing, catalog design, sale campaign
analysis, web log analysis, etc.

4. APRIORI AlgORIThMS

To achieve efficient mining frequent patterns, an
anti-monotonic property of frequent itemsets, called the
Apriori heuristic can be used. The Apriori heuristic can
prune candidates based on this property, a fast frequent
itemset mining algorithm, called Apriori.

Apriori: Any superset of an infrequent itemset cannot
be frequent. In other words, every subset of a frequent
itemset must be frequent.

Proof: To prove the theorem, we only need to show
sup(X) · sup(Y).

Given a transaction database TDB, Let X and Y be two
itemsets.

For each transaction T containing itemset X, T also
contains Y, which is a subset of X.

Thus, we have sup(X) · sup(Y).

4.1. Apriori finds the complete set of frequent itemsets
as follows

1. Scan TDB once to find frequent items, i.e. items
appearing in transactions.

If items (a, b, c, f, m, p). Each of these six items forms a
length-1 frequent itemset.

Let L1 be the complete set of length-1 frequent itemsets.

2. The set of length-2 candidates, denoted as C2, is
generated from L1. Here, we use the Apriori heuristic
to prune the candidates.

Only those candidates that consist of frequent subsets
can be potentially frequent.

3. Scan TDB once more to count the support of each
itemset in C2. The itemsets in C2 passing the support
threshold form the length-2 frequent itemsets,

4. Then, we form the set of length-3 candidates. Only
those length-3 itemsets for which every length-2
sub-itemset is in L2 are qualified as candidates. For
example, acf is a length-3 candidate since ac, af and cf
are all in L2.

One scan of TDB identifies the subset of length-3
candidates passing the support threshold and forms
the set L3 of length-3 frequent itemsets. A similar
process goes on until no candidate can be derived or
no candidate is frequent.

One can verify that the above process eventually finds
the complete set of frequent itemsets in the database
TDB (Sriphaew and Theeramunkong, 2004).

The Apriori algorithm is presented as follows.

4.2. Apriori algorithm flow

Input : Transaction database TDB and support
threshold min sup

Output : The complete sets of frequent patterns in TDB
with respect to support threshold min sup

Method

1. Scan transaction database TDB once to find L1, the
set of frequent 1-itemsets;

2. for (k = 2; Lk-1 ≠ θ;; k + +) do

 (a) Generate Ck ⊆ length-k candidates.

 A k-itemset X is in Ck if and only if

 every length-(Lk-1) ⊆ X is in Lk-1;

 (b) if Ck = θ; then go to Step 3;

(c) Scan transaction database TDB once to count the
support for every itemset in Ck;

 (d) Lk = {X|(X ∈Ck) ^ (sup(X) ≥ min_ sup)};

J. Sci. Trans. Environ. Technov. 3(1), 2009

www.bvgt-journal.com

27

3. Return U k i=1Li

The Apriori heuristic helps reducing the number of
candidates significantly. Since there are in number
of items appearing in the database, there could be
possible length of itemsets with the Apriori heuristic,
we only need to check the support counts for length
of candidates. Apriori cuts maximum at the length
of itemset level. As the length of candidates becomes
longer, the number of possible combinations becomes
larger, thus the cutting effect of the Apriori heuristic
is sharper.

Even though Apriori can cut a lot of candidates, it could
still be costly to handle a huge number of candidate
itemsets in large transaction databases. For example,
if there are 1 million items and only 1% is frequent
length itemsets, Apriori has to generate more length
candidates, test each of their support and save them
for length candidates’ generation. It is tedious to
repeatedly scan the database and check a large set of
candidates by pattern matching, which is particularly
true if a long pattern exists. Apriori is a level by level
candidate-generation-and-test algorithm. To find a
frequent itemset X, Apriori has to scan the database
100 times.

Apriori encounters difficulty in mining long patterns.
For example, to find a frequent itemset X, it has to
generate and test candidates.

5. fAST SeARCh APPly ThROUgh PATTeRN
gROwTh MeThOD

The major costs in Apriori-like methods are the
generation of a huge number of candidates and the
repeated scanning of large transaction databases to test
those candidates. In short, the candidate-generation
and test operation is the bottleneck for Apriori-like
methods. So we need to avoid candidate-generation
and test in frequent pattern mining. To attack this
problem, we develop Quick Mining Algorithm (QMA),
a pattern growth method for frequent pattern mining.
We propose an efficient algorithm for mining frequent
patterns from an FP and we discuss how to scale the
method to mine large databases.

Information from transaction databases is essential for
mining frequent patterns. Therefore, if we can extract
the concise information for frequent pattern mining
and store it into a compact structure (Pramudiono
and Kitsuregawa, 2004), then it may facilitate frequent
pattern mining. Motivated by this thinking, in this
paper, we develop a compact data structure, called
QMA, to store complete but no redundant information
for frequent pattern mining.

To design a compact data structure for efficient frequent-
pattern mining, let’s first examine an example.

A compact data structure can be designed based on the

following observations:

1. Since only the frequent items will play a role in the
frequent-pattern mining, it is necessary to perform
one scan of transaction database TDB to identify the
set of frequent items.

2. If the set of frequent items of each transaction can be
stored in some compact structure,it may be possible
to avoid repeatedly scanning the original transaction
database.

3. If multiple transactions share a set of frequent items,
it may be possible to merge the shared sets with
the number of occurrences registered as count. It is
easy to check whether two sets are identical if the
frequent items in all of the transactions are listed
according to a fixed order.

4. If two transactions share a common prefix, according
to some sorted order of frequent items, the shared
parts can be merged using one prefix structure as
long as the count is registered properly.

5.1 Algorithm - Quick Mining Algorithm (QMA)
construction

Input: A transaction database TDB and a minimum
support threshold min sup.

Output: FP, the frequent-pattern tree of TDB.

Method: The FP is constructed as follows.

1. Scan the transaction database TDB once. Collect
F, the set of frequent items, and the support of each
frequent item.

 2. Create the root of an FP-tree, T, and label it as “null”.
For each transaction t in TDB do the following.

Select the frequent items in transaction t and sort them
according to the order of FList.

Let the sorted frequent-item list in t be [p|P],
 where p is the first element and P is the remaining
list.
 Call insert tree ([p|P], T).
 The function insert tree ([p|P], T) is
 performed as follows.
 If T has a child N such that
 N.item-name = p.item-name
 then increment N’s count by 1;
 else create a new node N, with count
 initialized to 1,
 parent link linked to T, and node-link linked
 to the nodes with the same item-name
 via the node-link structure.
 If P is nonempty, call insert tree (P,N)
 recursively.
Analysis: The FP-tree construction takes exactly two

Quick Mining Algorithm (QMA) using pattern mining techniques

J. Sci. Trans. Environ. Technov. 3(1), 2009

www.bvgt-journal.com

28 J. Umamaheswari and S.Ravichandran

scans of the transaction database[10]:

 1. The first scan collects the set of frequent items.

 2.The second scan constructs the Quick Mining

5.2 Algorithm - Quick Mining Algorithm (QMA)

The cost of inserting a transaction t into the FP-tree is
the set of frequent items in t.

Input : A database DB, represented by QMA
constructed

Output : The complete set of frequent patterns.

Method : call QMA-growth (FP-tree, null).

Procedure QMA-growth (Tree, A)
 {
 if
 Tree contains a single_ prefix- path
 // Mining single prefix-path QMA-tree
 then
 {
 let P be the single_ prefix-path part of Tree;
 let Q be the multiple-path part with the top
 branching node replaced by a null root;
 for each combination of the nodes in the
 path P
 do generate_ pattern B U A with
 support = minimum support of nodes in B;
 let pattern_mining_set(P) Í
 patterns_generated;
 }
 else
 let Q be Tree;
 for each item ai in Q
 do
{
 // Mining multiple-path QMA-tree
 Generate_ pattern B= ai U A
 [support = ai:support];
 construct B’s conditional pattern-base and
 then B conditional QMA-tree ;
 if TreeB ‘“ è;
 then call QMA-growth(TreeB,B);
 let pattern_ set(Q) Í patterns_ generated;
 }
 return
 (pattern_set(P)Upattern_set(Q)U
 pattern_set(P) X pattern_set(Q)))
 }

With the properties, we show that the algorithm
correctly finds the complete set of frequent itemsets in
transaction database DB.

6. SOlUTIONS

In this paper, we review some important drawbacks
in Apriori algorithm and suggest strategies for
improvement.

The Apriori algorithm needs to scan the database
multiple times. When mining a huge database, multiple
database scans are costly. One feasible strategy to
improve the efficiency of Apriori algorithm is to reduce
the number of database scans.

Further more, the Apriori algorithm has to generate a
huge number of candidates. Storing and counting
these candidates are tedious. To hit this problem, some
studies focus on reducing the number of candidates.
One dominant operation in the Apriori algorithm is
support counting.

Our new approach quickly reads M transactions at a
time and updates the appropriate support counts. For
e.g., when the “first search” reaches the end of the
transaction database, it has made one scan over the
data and it starts over at the beginning for the next scan.
The “search object” are on the Roomy Data Base(RDB) is
candidate itemset. If an itemset is on the RDB, its support
is updated each time a transaction containing the itemset
is scanned.

At the start of the first scan, the “search object” on the
RDB, is the set of length-1 candidates.

At each stop it checks the “search object” on the RDB,
according to the following rules.

When the support count of a candidate itemset X passes
the support threshold, it checks whether X can be
joined with some other frequent itemsets [5] with the
same length to generate new candidates. If so, it adds
the new candidate on the bus.

It generates a length-k, itemset X, subsets of X which
have accumulated support greater than or equal to
the support threshold. When a candidate itemset X has
travelled for one complete scan, it is removed from the
bus. If at that time, the support for X is greater than or
equal to the support threshold, output X and its support
as a frequent pattern.

For example, let us consider mining a Voluminous
Transactional database (VTDB) with 20,000 transactions
and support threshold 50. Let the interval between
stops be 5,000. By overlapping the counting of different
lengths of itemsets, it can save some database scans. On
the other hand, it can also explore efficient support
counting. It optimizes the structure used in the Apriori
algorithm for counting candidates. Frequent items in
each candidate are sorted in support ascending order
according to their popularity in the first M transactions.
Such an order can reduce the number of inner loops in
counting. Reordering items incurs some overhead, but
for some data, it may be beneficial overall.

J. Sci. Trans. Environ. Technov. 3(1), 2009

www.bvgt-journal.com

29

7. CONClUSIONS

Quick Mining Algorithm (QMA) is testified in roomy
database. Database is divided into multiple partitions
where each partition can be held in main memory.
The whole voluminous database is rapidly scanned
only twice.

first scan : Partitions are read into main memory one by
one. Local frequent patterns are mined with respect to
relative support threshold using the apriori method.

Second scan: Consolidates global frequent patterns.
Each global frequent pattern must be frequent in at
least one partition. Therefore, only those local frequent
patterns should be counted and tested in the second
scan.

The major conclusions for this fast mining method are
in two aspects.

i. Partitioning the database is non-trivial when the
database is biased.

ii. On the other hand, a low global support threshold
may lead to a much lower local threshold and thus
produce a huge number of local frequent patterns.
By fast mining, we can observe the patterns hidden
behind the data more accurately, more steadily and
more proficiently.

ACKNOwleDgeMeNT

The authors are grateful to their Ph.D. guide
Dr.R.Balasubramnian, Principal, Government Arts and
Science College, Sivagangai, Tamilnadu for his valuable
guidance in the area of Knowledge Management.

RefeReNCeS

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining
association rules. In : Proc. 1994 Int Conf. Very Large Data
Bases (VLDB’94), P. 487–499, Santiago, Chile.

Bayardo, R. J., Agrawal, R. and Gunopulos, D. 1999.
Constraint-based rule mining on large dense data sets.
In: Proc. 1999 Int. Conf. Data Engineering (ICDE’99),
Sydney, Australia.

Kephant, J. and Arnold, W. 2000. Frequent pattern-projected
sequential pattern mining. In: Proc. 2000 Int. Conf.
Knowledge Discovery and Data Mining (KDD’00), P.
355–359, Boston, MA, August 2000.

Han, J., Pei, J. and Yin, Y. 2000. Mining frequent patterns
without candidate generation. In: Proc. 2000 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’ 00),
P. 1–12, Dallas, TX.

Pei, J., Han, J. and Mao, R. 2000. An efficient algorithm
for mining frequent closed itemsets. In: Proc.ACM/
SIGMOD International Workshop on Research Issues
on Data Mining and Knowledge Discovery (DMKD),
Dallas, TX, P.21-30.

Li, W., Han, J. and Pei, J. 2001. Accurate and efficient
classification based on multiple class association rules.
In: Proc. IEEE 2001 Int. Conf. Data Mining (ICDM’01),
San Jose, A..

Burdick, D., Calimlim, M. and Gehrke, J. 2001. MAFIA: A
maximal frequent itemset algorithm for transactional
databases. In: Proc. International Conference on Data
Engineering (ICDE), Heidelberg, Germany, P.443-452.

Wang, K., Tang, L., Han, J. and Liu, J. 2002. Top down FP-
growth for association rule mining Techniques. In: Proc.
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), Taipei, Taiwan, P.334-340.

Sriphaew, K. and Theeramunkong, T. 2004. Fast algorithms
for mining generalized frequent patterns of generalized
association rules. In: IEICE Transactions on Information
and Systems.

Pramudiono, I. and Kitsuregawa, M. 2004. FP-tax: Tree
structure based generalized association rule mining.
In: Proc. ACM/SIGMOD International Workshop
on Research Issues on Data Mining and Knowledge
Discovery (DMKD), Paris, France, P.60-63.

Quick Mining Algorithm (QMA) using pattern mining techniques

