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Abstract
Pattern mining plays an essential role in many data mining tasks such as mining sequential patterns, multi-dimensional pat-
terns, max-patterns, and emerging patterns. Pattern mining techniques can also be extended to solve many other problems 
involving computation and classification. Pattern mining is a significant research problem. This paper discusses the problem 
of efficient and effective pattern mining with an orientation towards a fast mining method.
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1. INTRODUCTION

To create the set of candidate patterns of length (k+1) 
from the set of frequent patterns of length k (for k¸1), 
and check their matching occurrence frequencies in the 
database, the Apriori heuristic approach achieves fine 
performance gain by reducing the size of candidate 
sets. However, in situations with productive frequent 
patterns, long patterns, or quite low minimum support 
thresholds, an Apriori-like algorithm may still suffer 
from the nontrivial costs. It is expensive to handle a 
huge number of candidate sets. For example, the Apriori 
algorithm will need to produce more candidates and 
test their occurrence frequencies and candidates in 
total. This is the inherent cost of candidate generation 
no matter what implementation technique is applied 
(Han et al., 2000).  Furthermore, it is monotonous to 
repeatedly scan the database and check a large set of 
candidates by pattern matching, which is especially 
true for mining long patterns. 

Thus, Apriori algorithm has its advantages and 
disadvantages.  A way is to improve the effectiveness 
of frequent pattern mining substantially, and avoiding 
the costly candidate-generation-and-test and repeated 
database scan operations while obtaining this 
advantage. Frequent pattern mining often suffers not 
only from the lack of efficiency but also from the lack 
of effectiveness, i.e., there could be a huge number of 
frequent patterns generated from a database. 

As frequent pattern mining is a vital data-mining task, 
developing efficient frequent mining techniques has 
been an important research direction in data mining.  
This paper tries to make good movement in that 
direction.

2. CONTRIbUTIONS

In this paper, we study the problem of frequent  
pattern mining (Wang et al., 2002; Sriphaew and 
Theeramunkong, 2004), as well as some of its extensions. 
In particular, we make the following contributions. We 
systematically developed an association rule based 
pattern mining. A novel algorithm QMA is proposed for 
efficiently mining frequent patterns from voluminous 
dense datasets (Burdick et al., 2001). Constraint-based 
data mining is an important approach to solve the 
problem of data mining. We study the problem of 
constraint-based fast mining using pattern-growth 
methods (Bayardo et al., 1999). Our study shows that 
pattern-growth methods can push constraints deeper 
into the mining process.

We extend the fast pattern growth method to allow the 
mining of sequential patterns. Our approach shows 
that fast pattern mining methods are more efficient in 
mining voluminous sequence databases. Interesting 
techniques are developed to solve the sequential fast 
search mining problem effectively.

3. PRObleM DefINITIONS

Association rules can be derived from frequent patterns 
(Agrawal and Srikant, 1994).  An association rule is 
an implication of the form X → Y, Where X and Y are 
itemsets and X ∩ Y= θ the rule X → Y has support s in a 
transaction database TDB if supTDB(X U Y) = S. 

The rule X → Y holds in the transaction database TDB 
with confidence C where C = sup(X U Y)/ sup(X).

The frequent pattern mining problem is mainly focused 
towards the mining association rules between sets of 
items. Based on the research findings and solution of 
Agrawal and Srikant, (1994) we can define

 Let I = { i1,..........,im } be a set of items. 

An itemset X ⊆ I.  Particularly, an itemset with I items 
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is called an I-itemset. A transaction T = (tid,X) is a 
tuple where tid is a transaction-id and X is an itemset.A 
transaction T = (tid,X) is said to contain itemset Y if  
Y⊆ X.A transaction database  TDB is a set of 
transactions.

The support of an itemset X in transaction database 
TDB, denoted as supTDB(X) or sup(X), is the number of 
transactions in TDB containing X.

3.1.  Problem statement

Given a user-specified support threshold min sup X is 
called a frequent itemset or frequent pattern if sup(X) 
min sup. The problem of mining frequent itemset is to 
find the complete set of frequent itemset in a transaction 
database TDB with respect to a given support threshold 
min- sup. Given a transaction database TDB, a support 
threshold min sup and a confidence threshold min conf, 
the problem of association rule mining is to find the 
complete set of association rules that have support and 
confidence no less than the user-specified thresholds, 
respectively.

Association rule mining can be divided into two 
steps. 

i. Frequent patterns with respect to support threshold 
min sup are mined.    

ii. Association rules are generated with respect to 
confidence threshold min conf. 

As shown in many studies, the first step, mining 
frequent patterns, is significantly more costly in terms 
of time than the rule generation step. Frequent pattern 
mining is not only used in association rule mining. 
Instead, frequent pattern mining is the basis for many 
data mining tasks, such as sequential pattern mining 
and associative classification (Li et al., 2001).  It also 
has broad applications, such as basket data analysis,  
cross-marketing, catalog design, sale campaign 
analysis, web log analysis, etc.

4.  APRIORI AlgORIThMS

To achieve efficient mining frequent patterns, an  
anti-monotonic property of frequent itemsets, called the 
Apriori heuristic can be used. The Apriori heuristic can 
prune candidates based on this property, a fast frequent 
itemset mining algorithm, called Apriori.

Apriori: Any superset of an infrequent itemset cannot 
be frequent.  In other words, every subset of a frequent 
itemset must be frequent.

Proof: To prove the theorem, we only need to show 
sup(X) · sup(Y).

Given a transaction database TDB, Let X and Y be two 
itemsets.

For each transaction T containing itemset X, T also 
contains Y, which is a subset of X.

Thus, we have sup(X) · sup(Y).

4.1. Apriori finds the complete set of frequent itemsets 
as follows

1. Scan TDB once to find frequent items, i.e. items 
appearing in transactions.

If items (a, b, c, f, m, p). Each of these six items forms a 
length-1 frequent itemset. 

Let L1 be the complete set of length-1 frequent itemsets.

2. The set of length-2 candidates, denoted as C2, is 
generated from L1.  Here, we use the Apriori heuristic 
to prune the candidates.

Only those candidates that consist of frequent subsets 
can be potentially frequent. 

3. Scan TDB once more to count the support of each 
itemset in C2. The itemsets in C2 passing the support 
threshold form the length-2 frequent itemsets, 

4. Then, we form the set of length-3 candidates. Only 
those length-3 itemsets for which every length-2  
sub-itemset is in L2 are qualified as candidates. For 
example, acf is a length-3 candidate since ac, af and cf 
are all in L2.

One scan of TDB identifies the subset of length-3 
candidates passing the support threshold and forms 
the set L3 of length-3 frequent itemsets. A similar 
process goes on until no candidate can be derived or 
no candidate is frequent.

One can verify that the above process eventually finds 
the complete set of frequent itemsets in the database 
TDB (Sriphaew and Theeramunkong, 2004).

The Apriori algorithm is presented as follows.

4.2.  Apriori algorithm flow

Input : Transaction database TDB and support 
threshold min sup

Output : The complete sets of frequent patterns in TDB 
with respect to support threshold  min sup

Method

1.  Scan transaction database TDB once to find L1, the 
set of frequent 1-itemsets;

2. for (k = 2; Lk-1 ≠ θ;; k + +) do

  (a) Generate Ck ⊆ length-k candidates.

       A k-itemset X is in Ck if and only if 

       every  length-( Lk-1) ⊆ X is in Lk-1;

  (b) if Ck = θ; then go to Step 3;

(c)  Scan transaction database TDB once to count the 
support for every itemset in Ck;

  (d)  Lk = {X|(X ∈Ck) ^ (sup(X) ≥ min_ sup)}; 
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3.  Return U k i=1Li

The Apriori heuristic helps reducing the number of 
candidates significantly. Since there are in number 
of items appearing in the database, there could be 
possible length of itemsets with the Apriori heuristic, 
we only need to check the support counts for length 
of candidates. Apriori cuts maximum at the length 
of itemset level. As the length of candidates becomes 
longer, the number of possible combinations becomes 
larger, thus the cutting effect of the Apriori heuristic 
is sharper.

Even though Apriori can cut a lot of candidates, it could 
still be costly to handle a huge number of candidate 
itemsets in large transaction databases. For example, 
if there are 1 million items and only 1% is frequent 
length itemsets, Apriori has to generate more length 
candidates, test each of their support and save them 
for length candidates’ generation. It is tedious to 
repeatedly scan the database and check a large set of 
candidates by pattern matching, which is particularly 
true if a long pattern exists. Apriori is a level by level 
candidate-generation-and-test algorithm. To find a 
frequent itemset X, Apriori has to scan the database 
100 times.

Apriori encounters difficulty in mining long patterns. 
For example, to find a frequent itemset X, it has to 
generate and test candidates. 

5.  fAST SeARCh APPly ThROUgh PATTeRN 
gROwTh MeThOD 

The major costs in Apriori-like methods are the 
generation of a huge number of candidates and the 
repeated scanning of large transaction databases to test 
those candidates.  In short, the candidate-generation 
and test operation is the bottleneck for Apriori-like 
methods.  So we need to avoid candidate-generation 
and test in frequent pattern mining. To attack this 
problem, we develop Quick Mining Algorithm (QMA), 
a pattern growth method for frequent pattern mining. 
We propose an efficient algorithm for mining frequent 
patterns from an FP and we discuss how to scale the 
method to mine large databases. 

Information from transaction databases is essential for 
mining frequent patterns. Therefore, if we can extract 
the concise information for frequent pattern mining 
and store it into a compact structure (Pramudiono 
and Kitsuregawa, 2004), then it may facilitate frequent 
pattern mining. Motivated by this thinking, in this 
paper, we develop a compact data structure, called 
QMA, to store complete but no redundant information 
for frequent pattern mining.

To design a compact data structure for efficient frequent-
pattern mining, let’s first examine an example.

A compact data structure can be designed based on the 

following observations:

1. Since only the frequent items will play a role in the 
frequent-pattern mining, it is necessary   to perform 
one scan of transaction database TDB to identify the 
set of frequent items. 

2. If the set of frequent items of each transaction can be 
stored in some compact structure,it may be possible 
to avoid repeatedly scanning the original transaction 
database.

3. If multiple transactions share a set of frequent items, 
it may be possible to merge the shared sets with 
the number of occurrences registered as count. It is 
easy to check whether two sets are identical if the 
frequent items in all of the transactions are listed 
according to a fixed order.

4. If two transactions share a common prefix, according 
to some sorted order of frequent items, the shared 
parts can be merged using one prefix structure as 
long as the count is registered  properly. 

5.1 Algorithm - Quick Mining Algorithm (QMA) 
construction

Input: A transaction database TDB and a minimum 
support threshold min sup.

Output:  FP, the frequent-pattern tree of TDB.

Method: The FP is constructed as follows.

1.  Scan the transaction database TDB once.   Collect 
F, the set of frequent items, and the  support of each 
frequent item.

 2.  Create the root of an FP-tree, T, and label it as “null”. 
For each transaction t in TDB do the following.

Select the frequent items in transaction t and sort them 
according to the order of FList. 

Let the sorted frequent-item list in t be [p|P],
 where p is the first element and P is the remaining 
list. 
 Call insert tree ([p|P], T).
 The function insert tree ([p|P], T) is
         performed as follows.
 If T has a child N such that 
   N.item-name = p.item-name
   then increment N’s count by 1;
     else create a new node N, with count
             initialized to 1,
 parent link linked to T, and node-link linked
           to the nodes  with the same item-name
          via the node-link structure. 
 If P is nonempty, call insert tree (P,N) 
        recursively.
Analysis: The FP-tree construction takes exactly two 

Quick Mining Algorithm (QMA) using pattern mining techniques
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scans of the transaction database[10]:

  1. The first scan collects the set of frequent items.

  2.The second scan constructs the Quick Mining 

5.2 Algorithm - Quick Mining Algorithm (QMA)

The cost of inserting a transaction t into the FP-tree is 
the set of frequent items in t. 

Input : A database DB, represented by QMA 
constructed 

Output  : The complete set of frequent patterns.

Method : call QMA-growth (FP-tree, null).

Procedure QMA-growth (Tree, A) 
 {
   if  
     Tree contains a single_ prefix- path 
      // Mining single prefix-path QMA-tree
   then   
  {
    let P be the single_ prefix-path part of Tree;
    let Q be the multiple-path part with the top 
        branching node replaced by a null root;
    for each combination of the nodes in the
          path P
   do   generate_ pattern B U A with 
     support = minimum support of nodes in B; 
    let   pattern_mining_set(P)   Í  
                                        patterns_generated; 
      }
       else 
         let Q be Tree;
         for  each item ai in Q
        do 
{   
 // Mining multiple-path QMA-tree
  Generate_ pattern B= ai U A
                   [ support = ai:support ];
  construct B’s  conditional pattern-base and 
                     then  B conditional QMA-tree ;
   if  TreeB ‘“ è;
   then call QMA-growth(TreeB,B);
    let pattern_ set(Q) Í patterns_ generated; 
              }
   return
    (pattern_set(P)Upattern_set(Q)U
               pattern_set(P) X pattern_set(Q)))
     }

With the properties, we show that the algorithm 
correctly finds the complete set of frequent itemsets in 
transaction database DB.

6.  SOlUTIONS

In this paper, we review some important drawbacks  
in Apriori algorithm and suggest strategies for 
improvement.

The Apriori algorithm needs to scan the database 
multiple times.  When mining a huge database, multiple 
database scans are costly. One feasible   strategy to 
improve the efficiency of Apriori algorithm is to reduce 
the number of database scans.

Further more, the Apriori algorithm has to generate a 
huge   number of candidates.    Storing and counting 
these candidates are tedious. To hit this problem, some 
studies focus on reducing the number of candidates. 
One dominant operation in the Apriori algorithm is 
support counting.

Our new approach quickly reads M transactions at a 
time and updates the appropriate support counts. For 
e.g., when the “first search” reaches the end of the 
transaction database, it has made one scan over the 
data and it starts over at the beginning for the next scan. 
The “search object” are on the Roomy Data Base(RDB) is 
candidate itemset. If an itemset is on the RDB, its support 
is updated each time a transaction containing the itemset 
is scanned.

At the start of the first scan, the “search object” on the 
RDB, is the set of length-1 candidates.

At each stop it checks the “search object”   on the RDB, 
according to the following rules.

When the support count of a candidate itemset X passes 
the support threshold, it checks whether X can be 
joined with some other frequent itemsets [5] with the 
same length to generate new candidates. If so, it adds 
the new candidate on the bus.

It generates a length-k, itemset X, subsets of  X which 
have accumulated support greater than or equal to 
the support threshold. When a candidate itemset X has 
travelled for one complete scan, it is removed from the 
bus. If at that time, the support for X is greater than or 
equal to the support threshold, output X and its support 
as a frequent pattern.

For example, let us consider mining a Voluminous 
Transactional database (VTDB) with 20,000 transactions 
and support threshold 50. Let the interval between 
stops be 5,000. By overlapping the counting of different 
lengths of itemsets, it can save some database scans. On 
the other hand, it can also explore efficient support 
counting. It optimizes the structure used in the Apriori 
algorithm for counting candidates. Frequent items in 
each candidate are sorted in support ascending order 
according to their popularity in the first M transactions. 
Such an order can reduce the number of inner loops in 
counting. Reordering items incurs some overhead, but 
for some data, it may be beneficial overall.
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7.  CONClUSIONS

Quick Mining Algorithm (QMA) is testified in roomy 
database. Database is divided into multiple partitions 
where each partition can be held in main memory. 
The whole voluminous database is rapidly scanned 
only twice. 

first scan : Partitions are read into main memory one by 
one. Local frequent patterns are mined with respect to 
relative support threshold using the apriori method. 

Second scan: Consolidates global frequent patterns. 
Each global frequent pattern must be frequent in at 
least one partition. Therefore, only those local frequent 
patterns should be counted and tested in the second 
scan.

The major conclusions for this fast mining method are 
in two aspects.

i. Partitioning the database is non-trivial when the 
database is biased. 

ii. On the other hand, a low global support threshold 
may lead to a much lower local threshold and thus 
produce a huge number of local frequent patterns. 
By fast mining, we can observe the patterns hidden 
behind the data more accurately, more steadily and 
more proficiently. 
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